PNG  IHDRQgAMA a cHRMz&u0`:pQ<bKGDgmIDATxwUﹻ& ^CX(J I@ "% (** BX +*i"]j(IH{~R)[~>h{}gy)I$Ij .I$I$ʊy@}x.: $I$Ii}VZPC)I$IF ^0ʐJ$I$Q^}{"r=OzI$gRZeC.IOvH eKX $IMpxsk.쒷/&r[޳<v| .I~)@$updYRa$I |M.e JaֶpSYR6j>h%IRز if&uJ)M$I vLi=H;7UJ,],X$I1AҒJ$ XY XzI@GNҥRT)E@;]K*Mw;#5_wOn~\ DC&$(A5 RRFkvIR}l!RytRl;~^ǷJj اy뷦BZJr&ӥ8Pjw~vnv X^(I;4R=P[3]J,]ȏ~:3?[ a&e)`e*P[4]T=Cq6R[ ~ޤrXR Հg(t_HZ-Hg M$ãmL5R uk*`%C-E6/%[t X.{8P9Z.vkXŐKjgKZHg(aK9ڦmKjѺm_ \#$5,)-  61eJ,5m| r'= &ڡd%-]J on Xm|{ RҞe $eڧY XYrԮ-a7RK6h>n$5AVڴi*ֆK)mѦtmr1p| q:흺,)Oi*ֺK)ܬ֦K-5r3>0ԔHjJئEZj,%re~/z%jVMڸmrt)3]J,T K֦OvԒgii*bKiNO~%PW0=dii2tJ9Jݕ{7"I P9JKTbu,%r"6RKU}Ij2HKZXJ,妝 XYrP ެ24c%i^IK|.H,%rb:XRl1X4Pe/`x&P8Pj28Mzsx2r\zRPz4J}yP[g=L) .Q[6RjWgp FIH*-`IMRaK9TXcq*I y[jE>cw%gLRԕiFCj-ďa`#e~I j,%r,)?[gp FI˨mnWX#>mʔ XA DZf9,nKҲzIZXJ,L#kiPz4JZF,I,`61%2s $,VOϚ2/UFJfy7K> X+6 STXIeJILzMfKm LRaK9%|4p9LwJI!`NsiazĔ)%- XMq>pk$-$Q2x#N ؎-QR}ᶦHZډ)J,l#i@yn3LN`;nڔ XuX5pF)m|^0(>BHF9(cզEerJI rg7 4I@z0\JIi䵙RR0s;$s6eJ,`n 䂦0a)S)A 1eJ,堌#635RIgpNHuTH_SԕqVe ` &S)>p;S$魁eKIuX`I4춒o}`m$1":PI<[v9^\pTJjriRŭ P{#{R2,`)e-`mgj~1ϣLKam7&U\j/3mJ,`F;M'䱀 .KR#)yhTq;pcK9(q!w?uRR,n.yw*UXj#\]ɱ(qv2=RqfB#iJmmL<]Y͙#$5 uTU7ӦXR+q,`I}qL'`6Kͷ6r,]0S$- [RKR3oiRE|nӦXR.(i:LDLTJjY%o:)6rxzҒqTJjh㞦I.$YR.ʼnGZ\ֿf:%55 I˼!6dKxm4E"mG_ s? .e*?LRfK9%q#uh$)i3ULRfK9yxm܌bj84$i1U^@Wbm4uJ,ҪA>_Ij?1v32[gLRD96oTaR׿N7%L2 NT,`)7&ƝL*꽙yp_$M2#AS,`)7$rkTA29_Iye"|/0t)$n XT2`YJ;6Jx".e<`$) PI$5V4]29SRI>~=@j]lp2`K9Jaai^" Ԋ29ORI%:XV5]JmN9]H;1UC39NI%Xe78t)a;Oi Ҙ>Xt"~G>_mn:%|~ޅ_+]$o)@ǀ{hgN;IK6G&rp)T2i୦KJuv*T=TOSV>(~D>dm,I*Ɛ:R#ۙNI%D>G.n$o;+#RR!.eU˽TRI28t)1LWϚ>IJa3oFbu&:tJ*(F7y0ZR ^p'Ii L24x| XRI%ۄ>S1]Jy[zL$adB7.eh4%%누>WETf+3IR:I3Xה)3אOۦSRO'ٺ)S}"qOr[B7ϙ.edG)^ETR"RtRݜh0}LFVӦDB^k_JDj\=LS(Iv─aTeZ%eUAM-0;~˃@i|l @S4y72>sX-vA}ϛBI!ݎߨWl*)3{'Y|iSlEڻ(5KtSI$Uv02,~ԩ~x;P4ցCrO%tyn425:KMlD ^4JRxSهF_}شJTS6uj+ﷸk$eZO%G*^V2u3EMj3k%)okI]dT)URKDS 7~m@TJR~荪fT"֛L \sM -0T KfJz+nإKr L&j()[E&I ߴ>e FW_kJR|!O:5/2跌3T-'|zX ryp0JS ~^F>-2< `*%ZFP)bSn"L :)+pʷf(pO3TMW$~>@~ū:TAIsV1}S2<%ޟM?@iT ,Eūoz%i~g|`wS(]oȤ8)$ ntu`өe`6yPl IzMI{ʣzʨ )IZ2= ld:5+請M$-ї;U>_gsY$ÁN5WzWfIZ)-yuXIfp~S*IZdt;t>KūKR|$#LcԀ+2\;kJ`]YǔM1B)UbG"IRߊ<xܾӔJ0Z='Y嵤 Leveg)$znV-º^3Ւof#0Tfk^Zs[*I꯳3{)ˬW4Ւ4 OdpbZRS|*I 55#"&-IvT&/윚Ye:i$ 9{LkuRe[I~_\ؠ%>GL$iY8 9ܕ"S`kS.IlC;Ҏ4x&>u_0JLr<J2(^$5L s=MgV ~,Iju> 7r2)^=G$1:3G< `J3~&IR% 6Tx/rIj3O< ʔ&#f_yXJiގNSz; Tx(i8%#4 ~AS+IjerIUrIj362v885+IjAhK__5X%nV%Iͳ-y|7XV2v4fzo_68"S/I-qbf; LkF)KSM$ Ms>K WNV}^`-큧32ŒVؙGdu,^^m%6~Nn&͓3ŒVZMsRpfEW%IwdǀLm[7W&bIRL@Q|)* i ImsIMmKmyV`i$G+R 0tV'!V)֏28vU7͒vHꦼtxꗞT ;S}7Mf+fIRHNZUkUx5SAJㄌ9MqμAIRi|j5)o*^'<$TwI1hEU^c_j?Е$%d`z cyf,XO IJnTgA UXRD }{H}^S,P5V2\Xx`pZ|Yk:$e ~ @nWL.j+ϝYb퇪bZ BVu)u/IJ_ 1[p.p60bC >|X91P:N\!5qUB}5a5ja `ubcVxYt1N0Zzl4]7­gKj]?4ϻ *[bg$)+À*x쳀ogO$~,5 زUS9 lq3+5mgw@np1sso Ӻ=|N6 /g(Wv7U;zωM=wk,0uTg_`_P`uz?2yI!b`kĸSo+Qx%!\οe|އԁKS-s6pu_(ֿ$i++T8=eY; צP+phxWQv*|p1. ά. XRkIQYP,drZ | B%wP|S5`~́@i޾ E;Չaw{o'Q?%iL{u D?N1BD!owPHReFZ* k_-~{E9b-~P`fE{AܶBJAFO wx6Rox5 K5=WwehS8 (JClJ~ p+Fi;ŗo+:bD#g(C"wA^ r.F8L;dzdIHUX݆ϞXg )IFqem%I4dj&ppT{'{HOx( Rk6^C٫O.)3:s(۳(Z?~ٻ89zmT"PLtw䥈5&b<8GZ-Y&K?e8,`I6e(֍xb83 `rzXj)F=l($Ij 2*(F?h(/9ik:I`m#p3MgLaKjc/U#n5S# m(^)=y=đx8ŬI[U]~SцA4p$-F i(R,7Cx;X=cI>{Km\ o(Tv2vx2qiiDJN,Ҏ!1f 5quBj1!8 rDFd(!WQl,gSkL1Bxg''՞^ǘ;pQ P(c_ IRujg(Wz bs#P­rz> k c&nB=q+ؔXn#r5)co*Ũ+G?7< |PQӣ'G`uOd>%Mctz# Ԫڞ&7CaQ~N'-P.W`Oedp03C!IZcIAMPUۀ5J<\u~+{9(FbbyAeBhOSܳ1 bÈT#ŠyDžs,`5}DC-`̞%r&ڙa87QWWp6e7 Rϫ/oY ꇅ Nܶըtc!LA T7V4Jsū I-0Pxz7QNF_iZgúWkG83 0eWr9 X]㾮݁#Jˢ C}0=3ݱtBi]_ &{{[/o[~ \q鯜00٩|cD3=4B_b RYb$óBRsf&lLX#M*C_L܄:gx)WΘsGSbuL rF$9';\4Ɍq'n[%p.Q`u hNb`eCQyQ|l_C>Lb꟟3hSb #xNxSs^ 88|Mz)}:](vbۢamŖ࿥ 0)Q7@0=?^k(*J}3ibkFn HjB׻NO z x}7p 0tfDX.lwgȔhԾŲ }6g E |LkLZteu+=q\Iv0쮑)QٵpH8/2?Σo>Jvppho~f>%bMM}\//":PTc(v9v!gոQ )UfVG+! 35{=x\2+ki,y$~A1iC6#)vC5^>+gǵ@1Hy٪7u;p psϰu/S <aʸGu'tD1ԝI<pg|6j'p:tպhX{o(7v],*}6a_ wXRk,O]Lܳ~Vo45rp"N5k;m{rZbΦ${#)`(Ŵg,;j%6j.pyYT?}-kBDc3qA`NWQū20/^AZW%NQ MI.X#P#,^Ebc&?XR tAV|Y.1!؅⨉ccww>ivl(JT~ u`ٵDm q)+Ri x/x8cyFO!/*!/&,7<.N,YDŽ&ܑQF1Bz)FPʛ?5d 6`kQձ λc؎%582Y&nD_$Je4>a?! ͨ|ȎWZSsv8 j(I&yj Jb5m?HWp=g}G3#|I,5v珿] H~R3@B[☉9Ox~oMy=J;xUVoj bUsl_35t-(ՃɼRB7U!qc+x4H_Qo֮$[GO<4`&č\GOc[.[*Af%mG/ ňM/r W/Nw~B1U3J?P&Y )`ѓZ1p]^l“W#)lWZilUQu`-m|xĐ,_ƪ|9i:_{*(3Gѧ}UoD+>m_?VPۅ15&}2|/pIOʵ> GZ9cmíتmnz)yߐbD >e}:) r|@R5qVSA10C%E_'^8cR7O;6[eKePGϦX7jb}OTGO^jn*媓7nGMC t,k31Rb (vyܴʭ!iTh8~ZYZp(qsRL ?b}cŨʊGO^!rPJO15MJ[c&~Z`"ѓޔH1C&^|Ш|rʼ,AwĴ?b5)tLU)F| &g٣O]oqSUjy(x<Ϳ3 .FSkoYg2 \_#wj{u'rQ>o;%n|F*O_L"e9umDds?.fuuQbIWz |4\0 sb;OvxOSs; G%T4gFRurj(֍ڑb uԖKDu1MK{1^ q; C=6\8FR艇!%\YÔU| 88m)֓NcLve C6z;o&X x59:q61Z(T7>C?gcļxѐ Z oo-08jہ x,`' ҔOcRlf~`jj".Nv+sM_]Zk g( UOPyεx%pUh2(@il0ݽQXxppx-NS( WO+轾 nFߢ3M<;z)FBZjciu/QoF 7R¥ ZFLF~#ȣߨ^<쩡ݛкvџ))ME>ώx4m#!-m!L;vv#~Y[đKmx9.[,UFS CVkZ +ߟrY٧IZd/ioi$%͝ب_ֶX3ܫhNU ZZgk=]=bbJS[wjU()*I =ώ:}-蹞lUj:1}MWm=̛ _ ¾,8{__m{_PVK^n3esw5ӫh#$-q=A̟> ,^I}P^J$qY~Q[ Xq9{#&T.^GVj__RKpn,b=`żY@^՝;z{paVKkQXj/)y TIc&F;FBG7wg ZZDG!x r_tƢ!}i/V=M/#nB8 XxЫ ^@CR<{䤭YCN)eKOSƟa $&g[i3.C6xrOc8TI;o hH6P&L{@q6[ Gzp^71j(l`J}]e6X☉#͕ ׈$AB1Vjh㭦IRsqFBjwQ_7Xk>y"N=MB0 ,C #o6MRc0|$)ف"1!ixY<B9mx `,tA>)5ػQ?jQ?cn>YZe Tisvh# GMމȇp:ԴVuږ8ɼH]C.5C!UV;F`mbBk LTMvPʍϤj?ԯ/Qr1NB`9s"s TYsz &9S%U԰> {<ؿSMxB|H\3@!U| k']$U+> |HHMLޢ?V9iD!-@x TIî%6Z*9X@HMW#?nN ,oe6?tQwڱ.]-y':mW0#!J82qFjH -`ѓ&M0u Uγmxϵ^-_\])@0Rt.8/?ٰCY]x}=sD3ojަЫNuS%U}ԤwHH>ڗjܷ_3gN q7[q2la*ArǓԖ+p8/RGM ]jacd(JhWko6ڎbj]i5Bj3+3!\j1UZLsLTv8HHmup<>gKMJj0@H%,W΃7R) ">c, xixј^ aܖ>H[i.UIHc U1=yW\=S*GR~)AF=`&2h`DzT󑓶J+?W+}C%P:|0H܆}-<;OC[~o.$~i}~HQ TvXΈr=b}$vizL4:ȰT|4~*!oXQR6Lk+#t/g lԁߖ[Jڶ_N$k*". xsxX7jRVbAAʯKҎU3)zSNN _'s?f)6X!%ssAkʱ>qƷb hg %n ~p1REGMHH=BJiy[<5 ǁJҖgKR*倳e~HUy)Ag,K)`Vw6bRR:qL#\rclK/$sh*$ 6덤 KԖc 3Z9=Ɣ=o>X Ώ"1 )a`SJJ6k(<c e{%kϊP+SL'TcMJWRm ŏ"w)qc ef꒵i?b7b('"2r%~HUS1\<(`1Wx9=8HY9m:X18bgD1u ~|H;K-Uep,, C1 RV.MR5άh,tWO8WC$ XRVsQS]3GJ|12 [vM :k#~tH30Rf-HYݺ-`I9%lIDTm\ S{]9gOڒMNCV\G*2JRŨ;Rҏ^ڽ̱mq1Eu?To3I)y^#jJw^Ńj^vvlB_⋌P4x>0$c>K†Aļ9s_VjTt0l#m>E-,,x,-W)سo&96RE XR.6bXw+)GAEvL)͞K4$p=Ũi_ѱOjb HY/+@θH9޼]Nԥ%n{ &zjT? Ty) s^ULlb,PiTf^<À] 62R^V7)S!nllS6~͝V}-=%* ʻ>G DnK<y&>LPy7'r=Hj 9V`[c"*^8HpcO8bnU`4JȪAƋ#1_\ XϘHPRgik(~G~0DAA_2p|J묭a2\NCr]M_0 ^T%e#vD^%xy-n}-E\3aS%yN!r_{ )sAw ڼp1pEAk~v<:`'ӭ^5 ArXOI驻T (dk)_\ PuA*BY]yB"l\ey hH*tbK)3 IKZ򹞋XjN n *n>k]X_d!ryBH ]*R 0(#'7 %es9??ښFC,ՁQPjARJ\Ρw K#jahgw;2$l*) %Xq5!U᢯6Re] |0[__64ch&_}iL8KEgҎ7 M/\`|.p,~`a=BR?xܐrQ8K XR2M8f ?`sgWS%" Ԉ 7R%$ N}?QL1|-эټwIZ%pvL3Hk>,ImgW7{E xPHx73RA @RS CC !\ȟ5IXR^ZxHл$Q[ŝ40 (>+ _C >BRt<,TrT {O/H+˟Pl6 I B)/VC<6a2~(XwV4gnXR ϱ5ǀHٻ?tw똤Eyxp{#WK qG%5],(0ӈH HZ])ג=K1j&G(FbM@)%I` XRg ʔ KZG(vP,<`[ Kn^ SJRsAʠ5xՅF`0&RbV tx:EaUE/{fi2;.IAwW8/tTxAGOoN?G}l L(n`Zv?pB8K_gI+ܗ #i?ޙ.) p$utc ~DžfՈEo3l/)I-U?aԅ^jxArA ΧX}DmZ@QLےbTXGd.^|xKHR{|ΕW_h] IJ`[G9{).y) 0X YA1]qp?p_k+J*Y@HI>^?gt.06Rn ,` ?);p pSF9ZXLBJPWjgQ|&)7! HjQt<| ؅W5 x W HIzYoVMGP Hjn`+\(dNW)F+IrS[|/a`K|ͻ0Hj{R,Q=\ (F}\WR)AgSG`IsnAR=|8$}G(vC$)s FBJ?]_u XRvύ6z ŨG[36-T9HzpW̞ú Xg큽=7CufzI$)ki^qk-) 0H*N` QZkk]/tnnsI^Gu't=7$ Z;{8^jB% IItRQS7[ϭ3 $_OQJ`7!]W"W,)Iy W AJA;KWG`IY{8k$I$^%9.^(`N|LJ%@$I}ֽp=FB*xN=gI?Q{٥4B)mw $Igc~dZ@G9K X?7)aK%݅K$IZ-`IpC U6$I\0>!9k} Xa IIS0H$I H ?1R.Чj:4~Rw@p$IrA*u}WjWFPJ$I➓/6#! LӾ+ X36x8J |+L;v$Io4301R20M I$-E}@,pS^ޟR[/s¹'0H$IKyfŸfVOπFT*a$I>He~VY/3R/)>d$I>28`Cjw,n@FU*9ttf$I~<;=/4RD~@ X-ѕzἱI$: ԍR a@b X{+Qxuq$IЛzo /~3\8ڒ4BN7$IҀj V]n18H$IYFBj3̵̚ja pp $Is/3R Ӻ-Yj+L;.0ŔI$Av? #!5"aʄj}UKmɽH$IjCYs?h$IDl843.v}m7UiI=&=0Lg0$I4: embe` eQbm0u? $IT!Sƍ'-sv)s#C0:XB2a w I$zbww{."pPzO =Ɔ\[ o($Iaw]`E).Kvi:L*#gР7[$IyGPI=@R 4yR~̮´cg I$I/<tPͽ hDgo 94Z^k盇΄8I56^W$I^0̜N?4*H`237}g+hxoq)SJ@p|` $I%>-hO0eO>\ԣNߌZD6R=K ~n($I$y3D>o4b#px2$yڪtzW~a $I~?x'BwwpH$IZݑnC㧄Pc_9sO gwJ=l1:mKB>Ab<4Lp$Ib o1ZQ@85b̍ S'F,Fe,^I$IjEdù{l4 8Ys_s Z8.x m"+{~?q,Z D!I$ϻ'|XhB)=…']M>5 rgotԎ 獽PH$IjIPhh)n#cÔqA'ug5qwU&rF|1E%I$%]!'3AFD/;Ck_`9 v!ٴtPV;x`'*bQa w I$Ix5 FC3D_~A_#O݆DvV?<qw+I$I{=Z8".#RIYyjǪ=fDl9%M,a8$I$Ywi[7ݍFe$s1ՋBVA?`]#!oz4zjLJo8$I$%@3jAa4(o ;p,,dya=F9ً[LSPH$IJYЉ+3> 5"39aZ<ñh!{TpBGkj}Sp $IlvF.F$I z< '\K*qq.f<2Y!S"-\I$IYwčjF$ w9 \ߪB.1v!Ʊ?+r:^!I$BϹB H"B;L'G[ 4U#5>੐)|#o0aڱ$I>}k&1`U#V?YsV x>{t1[I~D&(I$I/{H0fw"q"y%4 IXyE~M3 8XψL}qE$I[> nD?~sf ]o΁ cT6"?'_Ἣ $I>~.f|'!N?⟩0G KkXZE]ޡ;/&?k OۘH$IRۀwXӨ<7@PnS04aӶp.:@\IWQJ6sS%I$e5ڑv`3:x';wq_vpgHyXZ 3gЂ7{{EuԹn±}$I$8t;b|591nءQ"P6O5i }iR̈́%Q̄p!I䮢]O{H$IRϻ9s֧ a=`- aB\X0"+5"C1Hb?߮3x3&gşggl_hZ^,`5?ߎvĸ%̀M!OZC2#0x LJ0 Gw$I$I}<{Eb+y;iI,`ܚF:5ܛA8-O-|8K7s|#Z8a&><a&/VtbtLʌI$I$I$I$I$I$IRjDD%tEXtdate:create2022-05-31T04:40:26+00:00!Î%tEXtdate:modify2022-05-31T04:40:26+00:00|{2IENDB` sh-3ll

HOME


sh-3ll 1.0
DIR:/usr/share/doc/python3-docs/html/_sources/library/
Upload File :
Current File : //usr/share/doc/python3-docs/html/_sources/library/statistics.rst.txt
:mod:`statistics` --- Mathematical statistics functions
=======================================================

.. module:: statistics
   :synopsis: mathematical statistics functions

.. moduleauthor:: Steven D'Aprano <steve+python@pearwood.info>
.. sectionauthor:: Steven D'Aprano <steve+python@pearwood.info>

.. versionadded:: 3.4

**Source code:** :source:`Lib/statistics.py`

.. testsetup:: *

   from statistics import *
   __name__ = '<doctest>'

--------------

This module provides functions for calculating mathematical statistics of
numeric (:class:`Real`-valued) data.

.. note::

   Unless explicitly noted otherwise, these functions support :class:`int`,
   :class:`float`, :class:`decimal.Decimal` and :class:`fractions.Fraction`.
   Behaviour with other types (whether in the numeric tower or not) is
   currently unsupported.  Mixed types are also undefined and
   implementation-dependent.  If your input data consists of mixed types,
   you may be able to use :func:`map` to ensure a consistent result, e.g.
   ``map(float, input_data)``.

Averages and measures of central location
-----------------------------------------

These functions calculate an average or typical value from a population
or sample.

=======================  =============================================
:func:`mean`             Arithmetic mean ("average") of data.
:func:`harmonic_mean`    Harmonic mean of data.
:func:`median`           Median (middle value) of data.
:func:`median_low`       Low median of data.
:func:`median_high`      High median of data.
:func:`median_grouped`   Median, or 50th percentile, of grouped data.
:func:`mode`             Mode (most common value) of discrete data.
=======================  =============================================

Measures of spread
------------------

These functions calculate a measure of how much the population or sample
tends to deviate from the typical or average values.

=======================  =============================================
:func:`pstdev`           Population standard deviation of data.
:func:`pvariance`        Population variance of data.
:func:`stdev`            Sample standard deviation of data.
:func:`variance`         Sample variance of data.
=======================  =============================================


Function details
----------------

Note: The functions do not require the data given to them to be sorted.
However, for reading convenience, most of the examples show sorted sequences.

.. function:: mean(data)

   Return the sample arithmetic mean of *data* which can be a sequence or iterator.

   The arithmetic mean is the sum of the data divided by the number of data
   points.  It is commonly called "the average", although it is only one of many
   different mathematical averages.  It is a measure of the central location of
   the data.

   If *data* is empty, :exc:`StatisticsError` will be raised.

   Some examples of use:

   .. doctest::

      >>> mean([1, 2, 3, 4, 4])
      2.8
      >>> mean([-1.0, 2.5, 3.25, 5.75])
      2.625

      >>> from fractions import Fraction as F
      >>> mean([F(3, 7), F(1, 21), F(5, 3), F(1, 3)])
      Fraction(13, 21)

      >>> from decimal import Decimal as D
      >>> mean([D("0.5"), D("0.75"), D("0.625"), D("0.375")])
      Decimal('0.5625')

   .. note::

      The mean is strongly affected by outliers and is not a robust estimator
      for central location: the mean is not necessarily a typical example of the
      data points.  For more robust, although less efficient, measures of
      central location, see :func:`median` and :func:`mode`.  (In this case,
      "efficient" refers to statistical efficiency rather than computational
      efficiency.)

      The sample mean gives an unbiased estimate of the true population mean,
      which means that, taken on average over all the possible samples,
      ``mean(sample)`` converges on the true mean of the entire population.  If
      *data* represents the entire population rather than a sample, then
      ``mean(data)`` is equivalent to calculating the true population mean μ.


.. function:: harmonic_mean(data)

   Return the harmonic mean of *data*, a sequence or iterator of
   real-valued numbers.

   The harmonic mean, sometimes called the subcontrary mean, is the
   reciprocal of the arithmetic :func:`mean` of the reciprocals of the
   data. For example, the harmonic mean of three values *a*, *b* and *c*
   will be equivalent to ``3/(1/a + 1/b + 1/c)``.

   The harmonic mean is a type of average, a measure of the central
   location of the data.  It is often appropriate when averaging quantities
   which are rates or ratios, for example speeds. For example:

   Suppose an investor purchases an equal value of shares in each of
   three companies, with P/E (price/earning) ratios of 2.5, 3 and 10.
   What is the average P/E ratio for the investor's portfolio?

   .. doctest::

      >>> harmonic_mean([2.5, 3, 10])  # For an equal investment portfolio.
      3.6

   Using the arithmetic mean would give an average of about 5.167, which
   is too high.

   :exc:`StatisticsError` is raised if *data* is empty, or any element
   is less than zero.

   .. versionadded:: 3.6


.. function:: median(data)

   Return the median (middle value) of numeric data, using the common "mean of
   middle two" method.  If *data* is empty, :exc:`StatisticsError` is raised.
   *data* can be a sequence or iterator.

   The median is a robust measure of central location, and is less affected by
   the presence of outliers in your data.  When the number of data points is
   odd, the middle data point is returned:

   .. doctest::

      >>> median([1, 3, 5])
      3

   When the number of data points is even, the median is interpolated by taking
   the average of the two middle values:

   .. doctest::

      >>> median([1, 3, 5, 7])
      4.0

   This is suited for when your data is discrete, and you don't mind that the
   median may not be an actual data point.

   If your data is ordinal (supports order operations) but not numeric (doesn't
   support addition), you should use :func:`median_low` or :func:`median_high`
   instead.

   .. seealso:: :func:`median_low`, :func:`median_high`, :func:`median_grouped`


.. function:: median_low(data)

   Return the low median of numeric data.  If *data* is empty,
   :exc:`StatisticsError` is raised.  *data* can be a sequence or iterator.

   The low median is always a member of the data set.  When the number of data
   points is odd, the middle value is returned.  When it is even, the smaller of
   the two middle values is returned.

   .. doctest::

      >>> median_low([1, 3, 5])
      3
      >>> median_low([1, 3, 5, 7])
      3

   Use the low median when your data are discrete and you prefer the median to
   be an actual data point rather than interpolated.


.. function:: median_high(data)

   Return the high median of data.  If *data* is empty, :exc:`StatisticsError`
   is raised.  *data* can be a sequence or iterator.

   The high median is always a member of the data set.  When the number of data
   points is odd, the middle value is returned.  When it is even, the larger of
   the two middle values is returned.

   .. doctest::

      >>> median_high([1, 3, 5])
      3
      >>> median_high([1, 3, 5, 7])
      5

   Use the high median when your data are discrete and you prefer the median to
   be an actual data point rather than interpolated.


.. function:: median_grouped(data, interval=1)

   Return the median of grouped continuous data, calculated as the 50th
   percentile, using interpolation.  If *data* is empty, :exc:`StatisticsError`
   is raised.  *data* can be a sequence or iterator.

   .. doctest::

      >>> median_grouped([52, 52, 53, 54])
      52.5

   In the following example, the data are rounded, so that each value represents
   the midpoint of data classes, e.g. 1 is the midpoint of the class 0.5--1.5, 2
   is the midpoint of 1.5--2.5, 3 is the midpoint of 2.5--3.5, etc.  With the data
   given, the middle value falls somewhere in the class 3.5--4.5, and
   interpolation is used to estimate it:

   .. doctest::

      >>> median_grouped([1, 2, 2, 3, 4, 4, 4, 4, 4, 5])
      3.7

   Optional argument *interval* represents the class interval, and defaults
   to 1.  Changing the class interval naturally will change the interpolation:

   .. doctest::

      >>> median_grouped([1, 3, 3, 5, 7], interval=1)
      3.25
      >>> median_grouped([1, 3, 3, 5, 7], interval=2)
      3.5

   This function does not check whether the data points are at least
   *interval* apart.

   .. impl-detail::

      Under some circumstances, :func:`median_grouped` may coerce data points to
      floats.  This behaviour is likely to change in the future.

   .. seealso::

      * "Statistics for the Behavioral Sciences", Frederick J Gravetter and
        Larry B Wallnau (8th Edition).

      * Calculating the `median <https://www.ualberta.ca/~opscan/median.html>`_.

      * The `SSMEDIAN
        <https://help.gnome.org/users/gnumeric/stable/gnumeric.html#gnumeric-function-SSMEDIAN>`_
        function in the Gnome Gnumeric spreadsheet, including `this discussion
        <https://mail.gnome.org/archives/gnumeric-list/2011-April/msg00018.html>`_.


.. function:: mode(data)

   Return the most common data point from discrete or nominal *data*.  The mode
   (when it exists) is the most typical value, and is a robust measure of
   central location.

   If *data* is empty, or if there is not exactly one most common value,
   :exc:`StatisticsError` is raised.

   ``mode`` assumes discrete data, and returns a single value. This is the
   standard treatment of the mode as commonly taught in schools:

   .. doctest::

      >>> mode([1, 1, 2, 3, 3, 3, 3, 4])
      3

   The mode is unique in that it is the only statistic which also applies
   to nominal (non-numeric) data:

   .. doctest::

      >>> mode(["red", "blue", "blue", "red", "green", "red", "red"])
      'red'


.. function:: pstdev(data, mu=None)

   Return the population standard deviation (the square root of the population
   variance).  See :func:`pvariance` for arguments and other details.

   .. doctest::

      >>> pstdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
      0.986893273527251


.. function:: pvariance(data, mu=None)

   Return the population variance of *data*, a non-empty iterable of real-valued
   numbers.  Variance, or second moment about the mean, is a measure of the
   variability (spread or dispersion) of data.  A large variance indicates that
   the data is spread out; a small variance indicates it is clustered closely
   around the mean.

   If the optional second argument *mu* is given, it should be the mean of
   *data*.  If it is missing or ``None`` (the default), the mean is
   automatically calculated.

   Use this function to calculate the variance from the entire population.  To
   estimate the variance from a sample, the :func:`variance` function is usually
   a better choice.

   Raises :exc:`StatisticsError` if *data* is empty.

   Examples:

   .. doctest::

      >>> data = [0.0, 0.25, 0.25, 1.25, 1.5, 1.75, 2.75, 3.25]
      >>> pvariance(data)
      1.25

   If you have already calculated the mean of your data, you can pass it as the
   optional second argument *mu* to avoid recalculation:

   .. doctest::

      >>> mu = mean(data)
      >>> pvariance(data, mu)
      1.25

   This function does not attempt to verify that you have passed the actual mean
   as *mu*.  Using arbitrary values for *mu* may lead to invalid or impossible
   results.

   Decimals and Fractions are supported:

   .. doctest::

      >>> from decimal import Decimal as D
      >>> pvariance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
      Decimal('24.815')

      >>> from fractions import Fraction as F
      >>> pvariance([F(1, 4), F(5, 4), F(1, 2)])
      Fraction(13, 72)

   .. note::

      When called with the entire population, this gives the population variance
      σ².  When called on a sample instead, this is the biased sample variance
      s², also known as variance with N degrees of freedom.

      If you somehow know the true population mean μ, you may use this function
      to calculate the variance of a sample, giving the known population mean as
      the second argument.  Provided the data points are representative
      (e.g. independent and identically distributed), the result will be an
      unbiased estimate of the population variance.


.. function:: stdev(data, xbar=None)

   Return the sample standard deviation (the square root of the sample
   variance).  See :func:`variance` for arguments and other details.

   .. doctest::

      >>> stdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
      1.0810874155219827


.. function:: variance(data, xbar=None)

   Return the sample variance of *data*, an iterable of at least two real-valued
   numbers.  Variance, or second moment about the mean, is a measure of the
   variability (spread or dispersion) of data.  A large variance indicates that
   the data is spread out; a small variance indicates it is clustered closely
   around the mean.

   If the optional second argument *xbar* is given, it should be the mean of
   *data*.  If it is missing or ``None`` (the default), the mean is
   automatically calculated.

   Use this function when your data is a sample from a population. To calculate
   the variance from the entire population, see :func:`pvariance`.

   Raises :exc:`StatisticsError` if *data* has fewer than two values.

   Examples:

   .. doctest::

      >>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]
      >>> variance(data)
      1.3720238095238095

   If you have already calculated the mean of your data, you can pass it as the
   optional second argument *xbar* to avoid recalculation:

   .. doctest::

      >>> m = mean(data)
      >>> variance(data, m)
      1.3720238095238095

   This function does not attempt to verify that you have passed the actual mean
   as *xbar*.  Using arbitrary values for *xbar* can lead to invalid or
   impossible results.

   Decimal and Fraction values are supported:

   .. doctest::

      >>> from decimal import Decimal as D
      >>> variance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
      Decimal('31.01875')

      >>> from fractions import Fraction as F
      >>> variance([F(1, 6), F(1, 2), F(5, 3)])
      Fraction(67, 108)

   .. note::

      This is the sample variance s² with Bessel's correction, also known as
      variance with N-1 degrees of freedom.  Provided that the data points are
      representative (e.g. independent and identically distributed), the result
      should be an unbiased estimate of the true population variance.

      If you somehow know the actual population mean μ you should pass it to the
      :func:`pvariance` function as the *mu* parameter to get the variance of a
      sample.

Exceptions
----------

A single exception is defined:

.. exception:: StatisticsError

   Subclass of :exc:`ValueError` for statistics-related exceptions.

..
   # This modelines must appear within the last ten lines of the file.
   kate: indent-width 3; remove-trailing-space on; replace-tabs on; encoding utf-8;