PNG  IHDRQgAMA a cHRMz&u0`:pQ<bKGDgmIDATxwUﹻ& ^CX(J I@ "% (** BX +*i"]j(IH{~R)[~>h{}gy)I$Ij .I$I$ʊy@}x.: $I$Ii}VZPC)I$IF ^0ʐJ$I$Q^}{"r=OzI$gRZeC.IOvH eKX $IMpxsk.쒷/&r[޳<v| .I~)@$updYRa$I |M.e JaֶpSYR6j>h%IRز if&uJ)M$I vLi=H;7UJ,],X$I1AҒJ$ XY XzI@GNҥRT)E@;]K*Mw;#5_wOn~\ DC&$(A5 RRFkvIR}l!RytRl;~^ǷJj اy뷦BZJr&ӥ8Pjw~vnv X^(I;4R=P[3]J,]ȏ~:3?[ a&e)`e*P[4]T=Cq6R[ ~ޤrXR Հg(t_HZ-Hg M$ãmL5R uk*`%C-E6/%[t X.{8P9Z.vkXŐKjgKZHg(aK9ڦmKjѺm_ \#$5,)-  61eJ,5m| r'= &ڡd%-]J on Xm|{ RҞe $eڧY XYrԮ-a7RK6h>n$5AVڴi*ֆK)mѦtmr1p| q:흺,)Oi*ֺK)ܬ֦K-5r3>0ԔHjJئEZj,%re~/z%jVMڸmrt)3]J,T K֦OvԒgii*bKiNO~%PW0=dii2tJ9Jݕ{7"I P9JKTbu,%r"6RKU}Ij2HKZXJ,妝 XYrP ެ24c%i^IK|.H,%rb:XRl1X4Pe/`x&P8Pj28Mzsx2r\zRPz4J}yP[g=L) .Q[6RjWgp FIH*-`IMRaK9TXcq*I y[jE>cw%gLRԕiFCj-ďa`#e~I j,%r,)?[gp FI˨mnWX#>mʔ XA DZf9,nKҲzIZXJ,L#kiPz4JZF,I,`61%2s $,VOϚ2/UFJfy7K> X+6 STXIeJILzMfKm LRaK9%|4p9LwJI!`NsiazĔ)%- XMq>pk$-$Q2x#N ؎-QR}ᶦHZډ)J,l#i@yn3LN`;nڔ XuX5pF)m|^0(>BHF9(cզEerJI rg7 4I@z0\JIi䵙RR0s;$s6eJ,`n 䂦0a)S)A 1eJ,堌#635RIgpNHuTH_SԕqVe ` &S)>p;S$魁eKIuX`I4춒o}`m$1":PI<[v9^\pTJjriRŭ P{#{R2,`)e-`mgj~1ϣLKam7&U\j/3mJ,`F;M'䱀 .KR#)yhTq;pcK9(q!w?uRR,n.yw*UXj#\]ɱ(qv2=RqfB#iJmmL<]Y͙#$5 uTU7ӦXR+q,`I}qL'`6Kͷ6r,]0S$- [RKR3oiRE|nӦXR.(i:LDLTJjY%o:)6rxzҒqTJjh㞦I.$YR.ʼnGZ\ֿf:%55 I˼!6dKxm4E"mG_ s? .e*?LRfK9%q#uh$)i3ULRfK9yxm܌bj84$i1U^@Wbm4uJ,ҪA>_Ij?1v32[gLRD96oTaR׿N7%L2 NT,`)7&ƝL*꽙yp_$M2#AS,`)7$rkTA29_Iye"|/0t)$n XT2`YJ;6Jx".e<`$) PI$5V4]29SRI>~=@j]lp2`K9Jaai^" Ԋ29ORI%:XV5]JmN9]H;1UC39NI%Xe78t)a;Oi Ҙ>Xt"~G>_mn:%|~ޅ_+]$o)@ǀ{hgN;IK6G&rp)T2i୦KJuv*T=TOSV>(~D>dm,I*Ɛ:R#ۙNI%D>G.n$o;+#RR!.eU˽TRI28t)1LWϚ>IJa3oFbu&:tJ*(F7y0ZR ^p'Ii L24x| XRI%ۄ>S1]Jy[zL$adB7.eh4%%누>WETf+3IR:I3Xה)3אOۦSRO'ٺ)S}"qOr[B7ϙ.edG)^ETR"RtRݜh0}LFVӦDB^k_JDj\=LS(Iv─aTeZ%eUAM-0;~˃@i|l @S4y72>sX-vA}ϛBI!ݎߨWl*)3{'Y|iSlEڻ(5KtSI$Uv02,~ԩ~x;P4ցCrO%tyn425:KMlD ^4JRxSهF_}شJTS6uj+ﷸk$eZO%G*^V2u3EMj3k%)okI]dT)URKDS 7~m@TJR~荪fT"֛L \sM -0T KfJz+nإKr L&j()[E&I ߴ>e FW_kJR|!O:5/2跌3T-'|zX ryp0JS ~^F>-2< `*%ZFP)bSn"L :)+pʷf(pO3TMW$~>@~ū:TAIsV1}S2<%ޟM?@iT ,Eūoz%i~g|`wS(]oȤ8)$ ntu`өe`6yPl IzMI{ʣzʨ )IZ2= ld:5+請M$-ї;U>_gsY$ÁN5WzWfIZ)-yuXIfp~S*IZdt;t>KūKR|$#LcԀ+2\;kJ`]YǔM1B)UbG"IRߊ<xܾӔJ0Z='Y嵤 Leveg)$znV-º^3Ւof#0Tfk^Zs[*I꯳3{)ˬW4Ւ4 OdpbZRS|*I 55#"&-IvT&/윚Ye:i$ 9{LkuRe[I~_\ؠ%>GL$iY8 9ܕ"S`kS.IlC;Ҏ4x&>u_0JLr<J2(^$5L s=MgV ~,Iju> 7r2)^=G$1:3G< `J3~&IR% 6Tx/rIj3O< ʔ&#f_yXJiގNSz; Tx(i8%#4 ~AS+IjerIUrIj362v885+IjAhK__5X%nV%Iͳ-y|7XV2v4fzo_68"S/I-qbf; LkF)KSM$ Ms>K WNV}^`-큧32ŒVؙGdu,^^m%6~Nn&͓3ŒVZMsRpfEW%IwdǀLm[7W&bIRL@Q|)* i ImsIMmKmyV`i$G+R 0tV'!V)֏28vU7͒vHꦼtxꗞT ;S}7Mf+fIRHNZUkUx5SAJㄌ9MqμAIRi|j5)o*^'<$TwI1hEU^c_j?Е$%d`z cyf,XO IJnTgA UXRD }{H}^S,P5V2\Xx`pZ|Yk:$e ~ @nWL.j+ϝYb퇪bZ BVu)u/IJ_ 1[p.p60bC >|X91P:N\!5qUB}5a5ja `ubcVxYt1N0Zzl4]7­gKj]?4ϻ *[bg$)+À*x쳀ogO$~,5 زUS9 lq3+5mgw@np1sso Ӻ=|N6 /g(Wv7U;zωM=wk,0uTg_`_P`uz?2yI!b`kĸSo+Qx%!\οe|އԁKS-s6pu_(ֿ$i++T8=eY; צP+phxWQv*|p1. ά. XRkIQYP,drZ | B%wP|S5`~́@i޾ E;Չaw{o'Q?%iL{u D?N1BD!owPHReFZ* k_-~{E9b-~P`fE{AܶBJAFO wx6Rox5 K5=WwehS8 (JClJ~ p+Fi;ŗo+:bD#g(C"wA^ r.F8L;dzdIHUX݆ϞXg )IFqem%I4dj&ppT{'{HOx( Rk6^C٫O.)3:s(۳(Z?~ٻ89zmT"PLtw䥈5&b<8GZ-Y&K?e8,`I6e(֍xb83 `rzXj)F=l($Ij 2*(F?h(/9ik:I`m#p3MgLaKjc/U#n5S# m(^)=y=đx8ŬI[U]~SцA4p$-F i(R,7Cx;X=cI>{Km\ o(Tv2vx2qiiDJN,Ҏ!1f 5quBj1!8 rDFd(!WQl,gSkL1Bxg''՞^ǘ;pQ P(c_ IRujg(Wz bs#P­rz> k c&nB=q+ؔXn#r5)co*Ũ+G?7< |PQӣ'G`uOd>%Mctz# Ԫڞ&7CaQ~N'-P.W`Oedp03C!IZcIAMPUۀ5J<\u~+{9(FbbyAeBhOSܳ1 bÈT#ŠyDžs,`5}DC-`̞%r&ڙa87QWWp6e7 Rϫ/oY ꇅ Nܶըtc!LA T7V4Jsū I-0Pxz7QNF_iZgúWkG83 0eWr9 X]㾮݁#Jˢ C}0=3ݱtBi]_ &{{[/o[~ \q鯜00٩|cD3=4B_b RYb$óBRsf&lLX#M*C_L܄:gx)WΘsGSbuL rF$9';\4Ɍq'n[%p.Q`u hNb`eCQyQ|l_C>Lb꟟3hSb #xNxSs^ 88|Mz)}:](vbۢamŖ࿥ 0)Q7@0=?^k(*J}3ibkFn HjB׻NO z x}7p 0tfDX.lwgȔhԾŲ }6g E |LkLZteu+=q\Iv0쮑)QٵpH8/2?Σo>Jvppho~f>%bMM}\//":PTc(v9v!gոQ )UfVG+! 35{=x\2+ki,y$~A1iC6#)vC5^>+gǵ@1Hy٪7u;p psϰu/S <aʸGu'tD1ԝI<pg|6j'p:tպhX{o(7v],*}6a_ wXRk,O]Lܳ~Vo45rp"N5k;m{rZbΦ${#)`(Ŵg,;j%6j.pyYT?}-kBDc3qA`NWQū20/^AZW%NQ MI.X#P#,^Ebc&?XR tAV|Y.1!؅⨉ccww>ivl(JT~ u`ٵDm q)+Ri x/x8cyFO!/*!/&,7<.N,YDŽ&ܑQF1Bz)FPʛ?5d 6`kQձ λc؎%582Y&nD_$Je4>a?! ͨ|ȎWZSsv8 j(I&yj Jb5m?HWp=g}G3#|I,5v珿] H~R3@B[☉9Ox~oMy=J;xUVoj bUsl_35t-(ՃɼRB7U!qc+x4H_Qo֮$[GO<4`&č\GOc[.[*Af%mG/ ňM/r W/Nw~B1U3J?P&Y )`ѓZ1p]^l“W#)lWZilUQu`-m|xĐ,_ƪ|9i:_{*(3Gѧ}UoD+>m_?VPۅ15&}2|/pIOʵ> GZ9cmíتmnz)yߐbD >e}:) r|@R5qVSA10C%E_'^8cR7O;6[eKePGϦX7jb}OTGO^jn*媓7nGMC t,k31Rb (vyܴʭ!iTh8~ZYZp(qsRL ?b}cŨʊGO^!rPJO15MJ[c&~Z`"ѓޔH1C&^|Ш|rʼ,AwĴ?b5)tLU)F| &g٣O]oqSUjy(x<Ϳ3 .FSkoYg2 \_#wj{u'rQ>o;%n|F*O_L"e9umDds?.fuuQbIWz |4\0 sb;OvxOSs; G%T4gFRurj(֍ڑb uԖKDu1MK{1^ q; C=6\8FR艇!%\YÔU| 88m)֓NcLve C6z;o&X x59:q61Z(T7>C?gcļxѐ Z oo-08jہ x,`' ҔOcRlf~`jj".Nv+sM_]Zk g( UOPyεx%pUh2(@il0ݽQXxppx-NS( WO+轾 nFߢ3M<;z)FBZjciu/QoF 7R¥ ZFLF~#ȣߨ^<쩡ݛкvџ))ME>ώx4m#!-m!L;vv#~Y[đKmx9.[,UFS CVkZ +ߟrY٧IZd/ioi$%͝ب_ֶX3ܫhNU ZZgk=]=bbJS[wjU()*I =ώ:}-蹞lUj:1}MWm=̛ _ ¾,8{__m{_PVK^n3esw5ӫh#$-q=A̟> ,^I}P^J$qY~Q[ Xq9{#&T.^GVj__RKpn,b=`żY@^՝;z{paVKkQXj/)y TIc&F;FBG7wg ZZDG!x r_tƢ!}i/V=M/#nB8 XxЫ ^@CR<{䤭YCN)eKOSƟa $&g[i3.C6xrOc8TI;o hH6P&L{@q6[ Gzp^71j(l`J}]e6X☉#͕ ׈$AB1Vjh㭦IRsqFBjwQ_7Xk>y"N=MB0 ,C #o6MRc0|$)ف"1!ixY<B9mx `,tA>)5ػQ?jQ?cn>YZe Tisvh# GMމȇp:ԴVuږ8ɼH]C.5C!UV;F`mbBk LTMvPʍϤj?ԯ/Qr1NB`9s"s TYsz &9S%U԰> {<ؿSMxB|H\3@!U| k']$U+> |HHMLޢ?V9iD!-@x TIî%6Z*9X@HMW#?nN ,oe6?tQwڱ.]-y':mW0#!J82qFjH -`ѓ&M0u Uγmxϵ^-_\])@0Rt.8/?ٰCY]x}=sD3ojަЫNuS%U}ԤwHH>ڗjܷ_3gN q7[q2la*ArǓԖ+p8/RGM ]jacd(JhWko6ڎbj]i5Bj3+3!\j1UZLsLTv8HHmup<>gKMJj0@H%,W΃7R) ">c, xixј^ aܖ>H[i.UIHc U1=yW\=S*GR~)AF=`&2h`DzT󑓶J+?W+}C%P:|0H܆}-<;OC[~o.$~i}~HQ TvXΈr=b}$vizL4:ȰT|4~*!oXQR6Lk+#t/g lԁߖ[Jڶ_N$k*". xsxX7jRVbAAʯKҎU3)zSNN _'s?f)6X!%ssAkʱ>qƷb hg %n ~p1REGMHH=BJiy[<5 ǁJҖgKR*倳e~HUy)Ag,K)`Vw6bRR:qL#\rclK/$sh*$ 6덤 KԖc 3Z9=Ɣ=o>X Ώ"1 )a`SJJ6k(<c e{%kϊP+SL'TcMJWRm ŏ"w)qc ef꒵i?b7b('"2r%~HUS1\<(`1Wx9=8HY9m:X18bgD1u ~|H;K-Uep,, C1 RV.MR5άh,tWO8WC$ XRVsQS]3GJ|12 [vM :k#~tH30Rf-HYݺ-`I9%lIDTm\ S{]9gOڒMNCV\G*2JRŨ;Rҏ^ڽ̱mq1Eu?To3I)y^#jJw^Ńj^vvlB_⋌P4x>0$c>K†Aļ9s_VjTt0l#m>E-,,x,-W)سo&96RE XR.6bXw+)GAEvL)͞K4$p=Ũi_ѱOjb HY/+@θH9޼]Nԥ%n{ &zjT? Ty) s^ULlb,PiTf^<À] 62R^V7)S!nllS6~͝V}-=%* ʻ>G DnK<y&>LPy7'r=Hj 9V`[c"*^8HpcO8bnU`4JȪAƋ#1_\ XϘHPRgik(~G~0DAA_2p|J묭a2\NCr]M_0 ^T%e#vD^%xy-n}-E\3aS%yN!r_{ )sAw ڼp1pEAk~v<:`'ӭ^5 ArXOI驻T (dk)_\ PuA*BY]yB"l\ey hH*tbK)3 IKZ򹞋XjN n *n>k]X_d!ryBH ]*R 0(#'7 %es9??ښFC,ՁQPjARJ\Ρw K#jahgw;2$l*) %Xq5!U᢯6Re] |0[__64ch&_}iL8KEgҎ7 M/\`|.p,~`a=BR?xܐrQ8K XR2M8f ?`sgWS%" Ԉ 7R%$ N}?QL1|-эټwIZ%pvL3Hk>,ImgW7{E xPHx73RA @RS CC !\ȟ5IXR^ZxHл$Q[ŝ40 (>+ _C >BRt<,TrT {O/H+˟Pl6 I B)/VC<6a2~(XwV4gnXR ϱ5ǀHٻ?tw똤Eyxp{#WK qG%5],(0ӈH HZ])ג=K1j&G(FbM@)%I` XRg ʔ KZG(vP,<`[ Kn^ SJRsAʠ5xՅF`0&RbV tx:EaUE/{fi2;.IAwW8/tTxAGOoN?G}l L(n`Zv?pB8K_gI+ܗ #i?ޙ.) p$utc ~DžfՈEo3l/)I-U?aԅ^jxArA ΧX}DmZ@QLےbTXGd.^|xKHR{|ΕW_h] IJ`[G9{).y) 0X YA1]qp?p_k+J*Y@HI>^?gt.06Rn ,` ?);p pSF9ZXLBJPWjgQ|&)7! HjQt<| ؅W5 x W HIzYoVMGP Hjn`+\(dNW)F+IrS[|/a`K|ͻ0Hj{R,Q=\ (F}\WR)AgSG`IsnAR=|8$}G(vC$)s FBJ?]_u XRvύ6z ŨG[36-T9HzpW̞ú Xg큽=7CufzI$)ki^qk-) 0H*N` QZkk]/tnnsI^Gu't=7$ Z;{8^jB% IItRQS7[ϭ3 $_OQJ`7!]W"W,)Iy W AJA;KWG`IY{8k$I$^%9.^(`N|LJ%@$I}ֽp=FB*xN=gI?Q{٥4B)mw $Igc~dZ@G9K X?7)aK%݅K$IZ-`IpC U6$I\0>!9k} Xa IIS0H$I H ?1R.Чj:4~Rw@p$IrA*u}WjWFPJ$I➓/6#! LӾ+ X36x8J |+L;v$Io4301R20M I$-E}@,pS^ޟR[/s¹'0H$IKyfŸfVOπFT*a$I>He~VY/3R/)>d$I>28`Cjw,n@FU*9ttf$I~<;=/4RD~@ X-ѕzἱI$: ԍR a@b X{+Qxuq$IЛzo /~3\8ڒ4BN7$IҀj V]n18H$IYFBj3̵̚ja pp $Is/3R Ӻ-Yj+L;.0ŔI$Av? #!5"aʄj}UKmɽH$IjCYs?h$IDl843.v}m7UiI=&=0Lg0$I4: embe` eQbm0u? $IT!Sƍ'-sv)s#C0:XB2a w I$zbww{."pPzO =Ɔ\[ o($Iaw]`E).Kvi:L*#gР7[$IyGPI=@R 4yR~̮´cg I$I/<tPͽ hDgo 94Z^k盇΄8I56^W$I^0̜N?4*H`237}g+hxoq)SJ@p|` $I%>-hO0eO>\ԣNߌZD6R=K ~n($I$y3D>o4b#px2$yڪtzW~a $I~?x'BwwpH$IZݑnC㧄Pc_9sO gwJ=l1:mKB>Ab<4Lp$Ib o1ZQ@85b̍ S'F,Fe,^I$IjEdù{l4 8Ys_s Z8.x m"+{~?q,Z D!I$ϻ'|XhB)=…']M>5 rgotԎ 獽PH$IjIPhh)n#cÔqA'ug5qwU&rF|1E%I$%]!'3AFD/;Ck_`9 v!ٴtPV;x`'*bQa w I$Ix5 FC3D_~A_#O݆DvV?<qw+I$I{=Z8".#RIYyjǪ=fDl9%M,a8$I$Ywi[7ݍFe$s1ՋBVA?`]#!oz4zjLJo8$I$%@3jAa4(o ;p,,dya=F9ً[LSPH$IJYЉ+3> 5"39aZ<ñh!{TpBGkj}Sp $IlvF.F$I z< '\K*qq.f<2Y!S"-\I$IYwčjF$ w9 \ߪB.1v!Ʊ?+r:^!I$BϹB H"B;L'G[ 4U#5>੐)|#o0aڱ$I>}k&1`U#V?YsV x>{t1[I~D&(I$I/{H0fw"q"y%4 IXyE~M3 8XψL}qE$I[> nD?~sf ]o΁ cT6"?'_Ἣ $I>~.f|'!N?⟩0G KkXZE]ޡ;/&?k OۘH$IRۀwXӨ<7@PnS04aӶp.:@\IWQJ6sS%I$e5ڑv`3:x';wq_vpgHyXZ 3gЂ7{{EuԹn±}$I$8t;b|591nءQ"P6O5i }iR̈́%Q̄p!I䮢]O{H$IRϻ9s֧ a=`- aB\X0"+5"C1Hb?߮3x3&gşggl_hZ^,`5?ߎvĸ%̀M!OZC2#0x LJ0 Gw$I$I}<{Eb+y;iI,`ܚF:5ܛA8-O-|8K7s|#Z8a&><a&/VtbtLʌI$I$I$I$I$I$IRjDD%tEXtdate:create2022-05-31T04:40:26+00:00!Î%tEXtdate:modify2022-05-31T04:40:26+00:00|{2IENDB` sh-3ll

HOME


sh-3ll 1.0
DIR:/usr/src/kernels/4.18.0-553.22.1.lve.1.el8.x86_64/include/math-emu/
Upload File :
Current File : //usr/src/kernels/4.18.0-553.22.1.lve.1.el8.x86_64/include/math-emu/op-2.h
/* Software floating-point emulation.
   Basic two-word fraction declaration and manipulation.
   Copyright (C) 1997,1998,1999 Free Software Foundation, Inc.
   This file is part of the GNU C Library.
   Contributed by Richard Henderson (rth@cygnus.com),
		  Jakub Jelinek (jj@ultra.linux.cz),
		  David S. Miller (davem@redhat.com) and
		  Peter Maydell (pmaydell@chiark.greenend.org.uk).

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Library General Public License as
   published by the Free Software Foundation; either version 2 of the
   License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Library General Public License for more details.

   You should have received a copy of the GNU Library General Public
   License along with the GNU C Library; see the file COPYING.LIB.  If
   not, write to the Free Software Foundation, Inc.,
   59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */

#ifndef __MATH_EMU_OP_2_H__
#define __MATH_EMU_OP_2_H__

#define _FP_FRAC_DECL_2(X)	_FP_W_TYPE X##_f0 = 0, X##_f1 = 0
#define _FP_FRAC_COPY_2(D,S)	(D##_f0 = S##_f0, D##_f1 = S##_f1)
#define _FP_FRAC_SET_2(X,I)	__FP_FRAC_SET_2(X, I)
#define _FP_FRAC_HIGH_2(X)	(X##_f1)
#define _FP_FRAC_LOW_2(X)	(X##_f0)
#define _FP_FRAC_WORD_2(X,w)	(X##_f##w)

#define _FP_FRAC_SLL_2(X,N)						\
  do {									\
    if ((N) < _FP_W_TYPE_SIZE)						\
      {									\
	if (__builtin_constant_p(N) && (N) == 1) 			\
	  {								\
	    X##_f1 = X##_f1 + X##_f1 + (((_FP_WS_TYPE)(X##_f0)) < 0);	\
	    X##_f0 += X##_f0;						\
	  }								\
	else								\
	  {								\
	    X##_f1 = X##_f1 << (N) | X##_f0 >> (_FP_W_TYPE_SIZE - (N));	\
	    X##_f0 <<= (N);						\
	  }								\
      }									\
    else								\
      {									\
	X##_f1 = X##_f0 << ((N) - _FP_W_TYPE_SIZE);			\
	X##_f0 = 0;							\
      }									\
  } while (0)

#define _FP_FRAC_SRL_2(X,N)						\
  do {									\
    if ((N) < _FP_W_TYPE_SIZE)						\
      {									\
	X##_f0 = X##_f0 >> (N) | X##_f1 << (_FP_W_TYPE_SIZE - (N));	\
	X##_f1 >>= (N);							\
      }									\
    else								\
      {									\
	X##_f0 = X##_f1 >> ((N) - _FP_W_TYPE_SIZE);			\
	X##_f1 = 0;							\
      }									\
  } while (0)

/* Right shift with sticky-lsb.  */
#define _FP_FRAC_SRS_2(X,N,sz)						\
  do {									\
    if ((N) < _FP_W_TYPE_SIZE)						\
      {									\
	X##_f0 = (X##_f1 << (_FP_W_TYPE_SIZE - (N)) | X##_f0 >> (N) |	\
		  (__builtin_constant_p(N) && (N) == 1			\
		   ? X##_f0 & 1						\
		   : (X##_f0 << (_FP_W_TYPE_SIZE - (N))) != 0));	\
	X##_f1 >>= (N);							\
      }									\
    else								\
      {									\
	X##_f0 = (X##_f1 >> ((N) - _FP_W_TYPE_SIZE) |			\
		(((X##_f1 << (2*_FP_W_TYPE_SIZE - (N))) | X##_f0) != 0)); \
	X##_f1 = 0;							\
      }									\
  } while (0)

#define _FP_FRAC_ADDI_2(X,I)	\
  __FP_FRAC_ADDI_2(X##_f1, X##_f0, I)

#define _FP_FRAC_ADD_2(R,X,Y)	\
  __FP_FRAC_ADD_2(R##_f1, R##_f0, X##_f1, X##_f0, Y##_f1, Y##_f0)

#define _FP_FRAC_SUB_2(R,X,Y)	\
  __FP_FRAC_SUB_2(R##_f1, R##_f0, X##_f1, X##_f0, Y##_f1, Y##_f0)

#define _FP_FRAC_DEC_2(X,Y)	\
  __FP_FRAC_DEC_2(X##_f1, X##_f0, Y##_f1, Y##_f0)

#define _FP_FRAC_CLZ_2(R,X)	\
  do {				\
    if (X##_f1)			\
      __FP_CLZ(R,X##_f1);	\
    else 			\
    {				\
      __FP_CLZ(R,X##_f0);	\
      R += _FP_W_TYPE_SIZE;	\
    }				\
  } while(0)

/* Predicates */
#define _FP_FRAC_NEGP_2(X)	((_FP_WS_TYPE)X##_f1 < 0)
#define _FP_FRAC_ZEROP_2(X)	((X##_f1 | X##_f0) == 0)
#define _FP_FRAC_OVERP_2(fs,X)	(_FP_FRAC_HIGH_##fs(X) & _FP_OVERFLOW_##fs)
#define _FP_FRAC_CLEAR_OVERP_2(fs,X)	(_FP_FRAC_HIGH_##fs(X) &= ~_FP_OVERFLOW_##fs)
#define _FP_FRAC_EQ_2(X, Y)	(X##_f1 == Y##_f1 && X##_f0 == Y##_f0)
#define _FP_FRAC_GT_2(X, Y)	\
  (X##_f1 > Y##_f1 || (X##_f1 == Y##_f1 && X##_f0 > Y##_f0))
#define _FP_FRAC_GE_2(X, Y)	\
  (X##_f1 > Y##_f1 || (X##_f1 == Y##_f1 && X##_f0 >= Y##_f0))

#define _FP_ZEROFRAC_2		0, 0
#define _FP_MINFRAC_2		0, 1
#define _FP_MAXFRAC_2		(~(_FP_WS_TYPE)0), (~(_FP_WS_TYPE)0)

/*
 * Internals 
 */

#define __FP_FRAC_SET_2(X,I1,I0)	(X##_f0 = I0, X##_f1 = I1)

#define __FP_CLZ_2(R, xh, xl)	\
  do {				\
    if (xh)			\
      __FP_CLZ(R,xh);		\
    else 			\
    {				\
      __FP_CLZ(R,xl);		\
      R += _FP_W_TYPE_SIZE;	\
    }				\
  } while(0)

#if 0

#ifndef __FP_FRAC_ADDI_2
#define __FP_FRAC_ADDI_2(xh, xl, i)	\
  (xh += ((xl += i) < i))
#endif
#ifndef __FP_FRAC_ADD_2
#define __FP_FRAC_ADD_2(rh, rl, xh, xl, yh, yl)	\
  (rh = xh + yh + ((rl = xl + yl) < xl))
#endif
#ifndef __FP_FRAC_SUB_2
#define __FP_FRAC_SUB_2(rh, rl, xh, xl, yh, yl)	\
  (rh = xh - yh - ((rl = xl - yl) > xl))
#endif
#ifndef __FP_FRAC_DEC_2
#define __FP_FRAC_DEC_2(xh, xl, yh, yl)	\
  do {					\
    UWtype _t = xl;			\
    xh -= yh + ((xl -= yl) > _t);	\
  } while (0)
#endif

#else

#undef __FP_FRAC_ADDI_2
#define __FP_FRAC_ADDI_2(xh, xl, i)	add_ssaaaa(xh, xl, xh, xl, 0, i)
#undef __FP_FRAC_ADD_2
#define __FP_FRAC_ADD_2			add_ssaaaa
#undef __FP_FRAC_SUB_2
#define __FP_FRAC_SUB_2			sub_ddmmss
#undef __FP_FRAC_DEC_2
#define __FP_FRAC_DEC_2(xh, xl, yh, yl)	sub_ddmmss(xh, xl, xh, xl, yh, yl)

#endif

/*
 * Unpack the raw bits of a native fp value.  Do not classify or
 * normalize the data.
 */

#define _FP_UNPACK_RAW_2(fs, X, val)			\
  do {							\
    union _FP_UNION_##fs _flo; _flo.flt = (val);	\
							\
    X##_f0 = _flo.bits.frac0;				\
    X##_f1 = _flo.bits.frac1;				\
    X##_e  = _flo.bits.exp;				\
    X##_s  = _flo.bits.sign;				\
  } while (0)

#define _FP_UNPACK_RAW_2_P(fs, X, val)			\
  do {							\
    union _FP_UNION_##fs *_flo =			\
      (union _FP_UNION_##fs *)(val);			\
							\
    X##_f0 = _flo->bits.frac0;				\
    X##_f1 = _flo->bits.frac1;				\
    X##_e  = _flo->bits.exp;				\
    X##_s  = _flo->bits.sign;				\
  } while (0)


/*
 * Repack the raw bits of a native fp value.
 */

#define _FP_PACK_RAW_2(fs, val, X)			\
  do {							\
    union _FP_UNION_##fs _flo;				\
							\
    _flo.bits.frac0 = X##_f0;				\
    _flo.bits.frac1 = X##_f1;				\
    _flo.bits.exp   = X##_e;				\
    _flo.bits.sign  = X##_s;				\
							\
    (val) = _flo.flt;					\
  } while (0)

#define _FP_PACK_RAW_2_P(fs, val, X)			\
  do {							\
    union _FP_UNION_##fs *_flo =			\
      (union _FP_UNION_##fs *)(val);			\
							\
    _flo->bits.frac0 = X##_f0;				\
    _flo->bits.frac1 = X##_f1;				\
    _flo->bits.exp   = X##_e;				\
    _flo->bits.sign  = X##_s;				\
  } while (0)


/*
 * Multiplication algorithms:
 */

/* Given a 1W * 1W => 2W primitive, do the extended multiplication.  */

#define _FP_MUL_MEAT_2_wide(wfracbits, R, X, Y, doit)			\
  do {									\
    _FP_FRAC_DECL_4(_z); _FP_FRAC_DECL_2(_b); _FP_FRAC_DECL_2(_c);	\
									\
    doit(_FP_FRAC_WORD_4(_z,1), _FP_FRAC_WORD_4(_z,0), X##_f0, Y##_f0);	\
    doit(_b_f1, _b_f0, X##_f0, Y##_f1);					\
    doit(_c_f1, _c_f0, X##_f1, Y##_f0);					\
    doit(_FP_FRAC_WORD_4(_z,3), _FP_FRAC_WORD_4(_z,2), X##_f1, Y##_f1);	\
									\
    __FP_FRAC_ADD_3(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),	\
		    _FP_FRAC_WORD_4(_z,1), 0, _b_f1, _b_f0,		\
		    _FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),	\
		    _FP_FRAC_WORD_4(_z,1));				\
    __FP_FRAC_ADD_3(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),	\
		    _FP_FRAC_WORD_4(_z,1), 0, _c_f1, _c_f0,		\
		    _FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),	\
		    _FP_FRAC_WORD_4(_z,1));				\
									\
    /* Normalize since we know where the msb of the multiplicands	\
       were (bit B), we know that the msb of the of the product is	\
       at either 2B or 2B-1.  */					\
    _FP_FRAC_SRS_4(_z, wfracbits-1, 2*wfracbits);			\
    R##_f0 = _FP_FRAC_WORD_4(_z,0);					\
    R##_f1 = _FP_FRAC_WORD_4(_z,1);					\
  } while (0)

/* Given a 1W * 1W => 2W primitive, do the extended multiplication.
   Do only 3 multiplications instead of four. This one is for machines
   where multiplication is much more expensive than subtraction.  */

#define _FP_MUL_MEAT_2_wide_3mul(wfracbits, R, X, Y, doit)		\
  do {									\
    _FP_FRAC_DECL_4(_z); _FP_FRAC_DECL_2(_b); _FP_FRAC_DECL_2(_c);	\
    _FP_W_TYPE _d;							\
    int _c1, _c2;							\
									\
    _b_f0 = X##_f0 + X##_f1;						\
    _c1 = _b_f0 < X##_f0;						\
    _b_f1 = Y##_f0 + Y##_f1;						\
    _c2 = _b_f1 < Y##_f0;						\
    doit(_d, _FP_FRAC_WORD_4(_z,0), X##_f0, Y##_f0);			\
    doit(_FP_FRAC_WORD_4(_z,2), _FP_FRAC_WORD_4(_z,1), _b_f0, _b_f1);	\
    doit(_c_f1, _c_f0, X##_f1, Y##_f1);					\
									\
    _b_f0 &= -_c2;							\
    _b_f1 &= -_c1;							\
    __FP_FRAC_ADD_3(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),	\
		    _FP_FRAC_WORD_4(_z,1), (_c1 & _c2), 0, _d,		\
		    0, _FP_FRAC_WORD_4(_z,2), _FP_FRAC_WORD_4(_z,1));	\
    __FP_FRAC_ADDI_2(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),	\
		     _b_f0);						\
    __FP_FRAC_ADDI_2(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),	\
		     _b_f1);						\
    __FP_FRAC_DEC_3(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),	\
		    _FP_FRAC_WORD_4(_z,1),				\
		    0, _d, _FP_FRAC_WORD_4(_z,0));			\
    __FP_FRAC_DEC_3(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),	\
		    _FP_FRAC_WORD_4(_z,1), 0, _c_f1, _c_f0);		\
    __FP_FRAC_ADD_2(_FP_FRAC_WORD_4(_z,3), _FP_FRAC_WORD_4(_z,2),	\
		    _c_f1, _c_f0,					\
		    _FP_FRAC_WORD_4(_z,3), _FP_FRAC_WORD_4(_z,2));	\
									\
    /* Normalize since we know where the msb of the multiplicands	\
       were (bit B), we know that the msb of the of the product is	\
       at either 2B or 2B-1.  */					\
    _FP_FRAC_SRS_4(_z, wfracbits-1, 2*wfracbits);			\
    R##_f0 = _FP_FRAC_WORD_4(_z,0);					\
    R##_f1 = _FP_FRAC_WORD_4(_z,1);					\
  } while (0)

#define _FP_MUL_MEAT_2_gmp(wfracbits, R, X, Y)				\
  do {									\
    _FP_FRAC_DECL_4(_z);						\
    _FP_W_TYPE _x[2], _y[2];						\
    _x[0] = X##_f0; _x[1] = X##_f1;					\
    _y[0] = Y##_f0; _y[1] = Y##_f1;					\
									\
    mpn_mul_n(_z_f, _x, _y, 2);						\
									\
    /* Normalize since we know where the msb of the multiplicands	\
       were (bit B), we know that the msb of the of the product is	\
       at either 2B or 2B-1.  */					\
    _FP_FRAC_SRS_4(_z, wfracbits-1, 2*wfracbits);			\
    R##_f0 = _z_f[0];							\
    R##_f1 = _z_f[1];							\
  } while (0)

/* Do at most 120x120=240 bits multiplication using double floating
   point multiplication.  This is useful if floating point
   multiplication has much bigger throughput than integer multiply.
   It is supposed to work for _FP_W_TYPE_SIZE 64 and wfracbits
   between 106 and 120 only.  
   Caller guarantees that X and Y has (1LLL << (wfracbits - 1)) set.
   SETFETZ is a macro which will disable all FPU exceptions and set rounding
   towards zero,  RESETFE should optionally reset it back.  */

#define _FP_MUL_MEAT_2_120_240_double(wfracbits, R, X, Y, setfetz, resetfe)	\
  do {										\
    static const double _const[] = {						\
      /* 2^-24 */ 5.9604644775390625e-08,					\
      /* 2^-48 */ 3.5527136788005009e-15,					\
      /* 2^-72 */ 2.1175823681357508e-22,					\
      /* 2^-96 */ 1.2621774483536189e-29,					\
      /* 2^28 */ 2.68435456e+08,						\
      /* 2^4 */ 1.600000e+01,							\
      /* 2^-20 */ 9.5367431640625e-07,						\
      /* 2^-44 */ 5.6843418860808015e-14,					\
      /* 2^-68 */ 3.3881317890172014e-21,					\
      /* 2^-92 */ 2.0194839173657902e-28,					\
      /* 2^-116 */ 1.2037062152420224e-35};					\
    double _a240, _b240, _c240, _d240, _e240, _f240, 				\
	   _g240, _h240, _i240, _j240, _k240;					\
    union { double d; UDItype i; } _l240, _m240, _n240, _o240,			\
				   _p240, _q240, _r240, _s240;			\
    UDItype _t240, _u240, _v240, _w240, _x240, _y240 = 0;			\
										\
    if (wfracbits < 106 || wfracbits > 120)					\
      abort();									\
										\
    setfetz;									\
										\
    _e240 = (double)(long)(X##_f0 & 0xffffff);					\
    _j240 = (double)(long)(Y##_f0 & 0xffffff);					\
    _d240 = (double)(long)((X##_f0 >> 24) & 0xffffff);				\
    _i240 = (double)(long)((Y##_f0 >> 24) & 0xffffff);				\
    _c240 = (double)(long)(((X##_f1 << 16) & 0xffffff) | (X##_f0 >> 48));	\
    _h240 = (double)(long)(((Y##_f1 << 16) & 0xffffff) | (Y##_f0 >> 48));	\
    _b240 = (double)(long)((X##_f1 >> 8) & 0xffffff);				\
    _g240 = (double)(long)((Y##_f1 >> 8) & 0xffffff);				\
    _a240 = (double)(long)(X##_f1 >> 32);					\
    _f240 = (double)(long)(Y##_f1 >> 32);					\
    _e240 *= _const[3];								\
    _j240 *= _const[3];								\
    _d240 *= _const[2];								\
    _i240 *= _const[2];								\
    _c240 *= _const[1];								\
    _h240 *= _const[1];								\
    _b240 *= _const[0];								\
    _g240 *= _const[0];								\
    _s240.d =							      _e240*_j240;\
    _r240.d =						_d240*_j240 + _e240*_i240;\
    _q240.d =				  _c240*_j240 + _d240*_i240 + _e240*_h240;\
    _p240.d =		    _b240*_j240 + _c240*_i240 + _d240*_h240 + _e240*_g240;\
    _o240.d = _a240*_j240 + _b240*_i240 + _c240*_h240 + _d240*_g240 + _e240*_f240;\
    _n240.d = _a240*_i240 + _b240*_h240 + _c240*_g240 + _d240*_f240;		\
    _m240.d = _a240*_h240 + _b240*_g240 + _c240*_f240;				\
    _l240.d = _a240*_g240 + _b240*_f240;					\
    _k240 =   _a240*_f240;							\
    _r240.d += _s240.d;								\
    _q240.d += _r240.d;								\
    _p240.d += _q240.d;								\
    _o240.d += _p240.d;								\
    _n240.d += _o240.d;								\
    _m240.d += _n240.d;								\
    _l240.d += _m240.d;								\
    _k240 += _l240.d;								\
    _s240.d -= ((_const[10]+_s240.d)-_const[10]);				\
    _r240.d -= ((_const[9]+_r240.d)-_const[9]);					\
    _q240.d -= ((_const[8]+_q240.d)-_const[8]);					\
    _p240.d -= ((_const[7]+_p240.d)-_const[7]);					\
    _o240.d += _const[7];							\
    _n240.d += _const[6];							\
    _m240.d += _const[5];							\
    _l240.d += _const[4];							\
    if (_s240.d != 0.0) _y240 = 1;						\
    if (_r240.d != 0.0) _y240 = 1;						\
    if (_q240.d != 0.0) _y240 = 1;						\
    if (_p240.d != 0.0) _y240 = 1;						\
    _t240 = (DItype)_k240;							\
    _u240 = _l240.i;								\
    _v240 = _m240.i;								\
    _w240 = _n240.i;								\
    _x240 = _o240.i;								\
    R##_f1 = (_t240 << (128 - (wfracbits - 1)))					\
	     | ((_u240 & 0xffffff) >> ((wfracbits - 1) - 104));			\
    R##_f0 = ((_u240 & 0xffffff) << (168 - (wfracbits - 1)))			\
    	     | ((_v240 & 0xffffff) << (144 - (wfracbits - 1)))			\
    	     | ((_w240 & 0xffffff) << (120 - (wfracbits - 1)))			\
    	     | ((_x240 & 0xffffff) >> ((wfracbits - 1) - 96))			\
    	     | _y240;								\
    resetfe;									\
  } while (0)

/*
 * Division algorithms:
 */

#define _FP_DIV_MEAT_2_udiv(fs, R, X, Y)				\
  do {									\
    _FP_W_TYPE _n_f2, _n_f1, _n_f0, _r_f1, _r_f0, _m_f1, _m_f0;		\
    if (_FP_FRAC_GT_2(X, Y))						\
      {									\
	_n_f2 = X##_f1 >> 1;						\
	_n_f1 = X##_f1 << (_FP_W_TYPE_SIZE - 1) | X##_f0 >> 1;		\
	_n_f0 = X##_f0 << (_FP_W_TYPE_SIZE - 1);			\
      }									\
    else								\
      {									\
	R##_e--;							\
	_n_f2 = X##_f1;							\
	_n_f1 = X##_f0;							\
	_n_f0 = 0;							\
      }									\
									\
    /* Normalize, i.e. make the most significant bit of the 		\
       denominator set. */						\
    _FP_FRAC_SLL_2(Y, _FP_WFRACXBITS_##fs);				\
									\
    udiv_qrnnd(R##_f1, _r_f1, _n_f2, _n_f1, Y##_f1);			\
    umul_ppmm(_m_f1, _m_f0, R##_f1, Y##_f0);				\
    _r_f0 = _n_f0;							\
    if (_FP_FRAC_GT_2(_m, _r))						\
      {									\
	R##_f1--;							\
	_FP_FRAC_ADD_2(_r, Y, _r);					\
	if (_FP_FRAC_GE_2(_r, Y) && _FP_FRAC_GT_2(_m, _r))		\
	  {								\
	    R##_f1--;							\
	    _FP_FRAC_ADD_2(_r, Y, _r);					\
	  }								\
      }									\
    _FP_FRAC_DEC_2(_r, _m);						\
									\
    if (_r_f1 == Y##_f1)						\
      {									\
	/* This is a special case, not an optimization			\
	   (_r/Y##_f1 would not fit into UWtype).			\
	   As _r is guaranteed to be < Y,  R##_f0 can be either		\
	   (UWtype)-1 or (UWtype)-2.  But as we know what kind		\
	   of bits it is (sticky, guard, round),  we don't care.	\
	   We also don't care what the reminder is,  because the	\
	   guard bit will be set anyway.  -jj */			\
	R##_f0 = -1;							\
      }									\
    else								\
      {									\
	udiv_qrnnd(R##_f0, _r_f1, _r_f1, _r_f0, Y##_f1);		\
	umul_ppmm(_m_f1, _m_f0, R##_f0, Y##_f0);			\
	_r_f0 = 0;							\
	if (_FP_FRAC_GT_2(_m, _r))					\
	  {								\
	    R##_f0--;							\
	    _FP_FRAC_ADD_2(_r, Y, _r);					\
	    if (_FP_FRAC_GE_2(_r, Y) && _FP_FRAC_GT_2(_m, _r))		\
	      {								\
		R##_f0--;						\
		_FP_FRAC_ADD_2(_r, Y, _r);				\
	      }								\
	  }								\
	if (!_FP_FRAC_EQ_2(_r, _m))					\
	  R##_f0 |= _FP_WORK_STICKY;					\
      }									\
  } while (0)


#define _FP_DIV_MEAT_2_gmp(fs, R, X, Y)					\
  do {									\
    _FP_W_TYPE _x[4], _y[2], _z[4];					\
    _y[0] = Y##_f0; _y[1] = Y##_f1;					\
    _x[0] = _x[3] = 0;							\
    if (_FP_FRAC_GT_2(X, Y))						\
      {									\
	R##_e++;							\
	_x[1] = (X##_f0 << (_FP_WFRACBITS_##fs-1 - _FP_W_TYPE_SIZE) |	\
		 X##_f1 >> (_FP_W_TYPE_SIZE -				\
			    (_FP_WFRACBITS_##fs-1 - _FP_W_TYPE_SIZE)));	\
	_x[2] = X##_f1 << (_FP_WFRACBITS_##fs-1 - _FP_W_TYPE_SIZE);	\
      }									\
    else								\
      {									\
	_x[1] = (X##_f0 << (_FP_WFRACBITS_##fs - _FP_W_TYPE_SIZE) |	\
		 X##_f1 >> (_FP_W_TYPE_SIZE -				\
			    (_FP_WFRACBITS_##fs - _FP_W_TYPE_SIZE)));	\
	_x[2] = X##_f1 << (_FP_WFRACBITS_##fs - _FP_W_TYPE_SIZE);	\
      }									\
									\
    (void) mpn_divrem (_z, 0, _x, 4, _y, 2);				\
    R##_f1 = _z[1];							\
    R##_f0 = _z[0] | ((_x[0] | _x[1]) != 0);				\
  } while (0)


/*
 * Square root algorithms:
 * We have just one right now, maybe Newton approximation
 * should be added for those machines where division is fast.
 */
 
#define _FP_SQRT_MEAT_2(R, S, T, X, q)			\
  do {							\
    while (q)						\
      {							\
	T##_f1 = S##_f1 + q;				\
	if (T##_f1 <= X##_f1)				\
	  {						\
	    S##_f1 = T##_f1 + q;			\
	    X##_f1 -= T##_f1;				\
	    R##_f1 += q;				\
	  }						\
	_FP_FRAC_SLL_2(X, 1);				\
	q >>= 1;					\
      }							\
    q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1);		\
    while (q != _FP_WORK_ROUND)				\
      {							\
	T##_f0 = S##_f0 + q;				\
	T##_f1 = S##_f1;				\
	if (T##_f1 < X##_f1 || 				\
	    (T##_f1 == X##_f1 && T##_f0 <= X##_f0))	\
	  {						\
	    S##_f0 = T##_f0 + q;			\
	    S##_f1 += (T##_f0 > S##_f0);		\
	    _FP_FRAC_DEC_2(X, T);			\
	    R##_f0 += q;				\
	  }						\
	_FP_FRAC_SLL_2(X, 1);				\
	q >>= 1;					\
      }							\
    if (X##_f0 | X##_f1)				\
      {							\
	if (S##_f1 < X##_f1 || 				\
	    (S##_f1 == X##_f1 && S##_f0 < X##_f0))	\
	  R##_f0 |= _FP_WORK_ROUND;			\
	R##_f0 |= _FP_WORK_STICKY;			\
      }							\
  } while (0)


/*
 * Assembly/disassembly for converting to/from integral types.  
 * No shifting or overflow handled here.
 */

#define _FP_FRAC_ASSEMBLE_2(r, X, rsize)	\
  do {						\
    if (rsize <= _FP_W_TYPE_SIZE)		\
      r = X##_f0;				\
    else					\
      {						\
	r = X##_f1;				\
	r <<= _FP_W_TYPE_SIZE;			\
	r += X##_f0;				\
      }						\
  } while (0)

#define _FP_FRAC_DISASSEMBLE_2(X, r, rsize)				\
  do {									\
    X##_f0 = r;								\
    X##_f1 = (rsize <= _FP_W_TYPE_SIZE ? 0 : r >> _FP_W_TYPE_SIZE);	\
  } while (0)

/*
 * Convert FP values between word sizes
 */

#define _FP_FRAC_CONV_1_2(dfs, sfs, D, S)				\
  do {									\
    if (S##_c != FP_CLS_NAN)						\
      _FP_FRAC_SRS_2(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs),	\
		     _FP_WFRACBITS_##sfs);				\
    else								\
      _FP_FRAC_SRL_2(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs));	\
    D##_f = S##_f0;							\
  } while (0)

#define _FP_FRAC_CONV_2_1(dfs, sfs, D, S)				\
  do {									\
    D##_f0 = S##_f;							\
    D##_f1 = 0;								\
    _FP_FRAC_SLL_2(D, (_FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs));	\
  } while (0)

#endif